Benchmarking of performance of Mexican states with effective coverage

Rafael Lozano, Patricia Soliz, Emmanuela Gakidou, Jesse Abbott-Klafter, Dennis M Feehan, Cecilia Vidal, Juan Pablo Ortiz, Christopher J L Murray

Benchmarking of the performance of states, provinces, or districts in a decentralised health system is important for fostering of accountability, monitoring of progress, identification of determinants of success and failure, and creation of a culture of evidence. The Mexican Ministry of Health has, since 2001, used a benchmarking approach based on the WHO concept of effective coverage of an intervention, which is defined as the proportion of potential health gain that could be delivered by the health system to that which is actually delivered. Using data collection systems, including state representative examination surveys, vital registration, and hospital discharge registries, we have monitored the delivery of 14 interventions for 2005–06. Overall effective coverage ranges from 54·0% in Chiapas, a poor state, to 65·1% in the Federal District. Effective coverage for maternal and child health interventions is substantially higher than that for interventions that target other health problems. Effective coverage for the lowest wealth quintile is 52% compared with 61% for the highest quintile. Effective coverage is closely related to public-health spending per head across states; this relation is stronger for interventions that are not related to maternal and child health than those for maternal and child health. Considerable variation also exists in effective coverage at similar amounts of spending. We discuss the implications of these issues for the further development of the Mexican health-information system. Benchmarking of performance by measuring effective coverage encourages decision-makers to focus on quality service provision, not only service availability. The effective coverage calculation is an important device for health-system stewardship. In adopting this approach, other countries should select interventions to be measured on the basis of the criteria of affordability, effect on population health, effect on health inequalities, and capacity to measure the effects of the intervention. The national institutions undertaking this benchmarking must have the mandate, skills, resources, and independence to succeed.

Benchmarking of the performance of health systems is important for fostering of accountability, monitoring of progress, identification of determinants of success and failure, and creation of a culture of evidence. Initiatives from WHO and the Organisation for Economic Co-operation and Development have drawn attention to the interest in performance benchmarking of health systems between countries. Performance benchmarking can also be important in countries with federal systems of government to help manage decentralised units. Since 2001, the Mexican Ministry of Health has been developing a state-performance benchmarking system. Five yearly reports called Salud México, have been published, each of which has been released at a yearly accountability citizen forum, which brings together important federal and state decision-makers, civil society, academics, and the media.

State performance measurement in these reports began with a traditional set of indicators of inputs, outputs, and outcomes. Since the development of the WHO framework for health-systems performance and the elaboration of the construct of effective coverage, the Ministry of Health has been using a performance benchmarking approach based on effective coverage. An initial assessment was released by the Ministry of Health based on data obtained from a range of sources between 2000 and 2002, including the National Health Survey in 2000 and the National Health System Performance Survey in 2002–03, which used the World Health Survey. The recently completed state-representative National Health and Nutrition Survey 2005–06, provides more data with which to measure important aspects of effective coverage.

Effective coverage brings together three traditions: measurement of intervention coverage, demand for healthcare, and access to healthcare. Effective coverage has been defined for an intervention as “the fraction of potential health gain that can be delivered through an intervention by the health system that is actually delivered.” For example, if the health system could, through detection and treatment of cervical cancer, increase healthy life expectancy for women by 2 years, but delivers only 1 year of increased healthy life expectancy, then effective coverage for this intervention is 50%. Another way to understand effective coverage is use of an intervention conditional on the need for it and adjusted for quality. Need in this framework exists if capacity exists to benefit from the intervention. Quality is defined as the ratio of health gain delivered through an intervention relative to the maximum health gain possible given ideal quality. Delivery of health gain requires that services be available, individuals in households perceive a need and demand the service, providers deliver the right intervention, and individuals adhere to the intervention. Thus, gaps in effective coverage might be due to physical, financial, or cultural barriers to accessing care, the resources available to providers, provider quality,
and a range of factors that determine household demand. Effective coverage can be aggregated across interventions with the same logic. Overall health-system effective coverage is the fraction of potential health gain for the population that a health system could deliver that is actually delivered.

Mexico is the first country to fully implement the WHO recommendation to measure effective coverage of health care interventions. Measurement has necessitated the development of measurement strategies and, in some cases, new analytical methods. Although the concept, particularly the incorporation of quality, has been only partly implemented, the Mexican experience provides a good example of the important interplay between national endeavours to monitor health-system performance and the parallel worldwide agenda. In this paper, we describe

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Population in need</th>
<th>Use</th>
<th>Quality</th>
<th>Years available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measles immunisation</td>
<td>Children aged 18–59 months</td>
<td>One or more doses of the MMR or Antisarmpolin vaccines as shown on a vaccination card or, for those without a card, according to the mother’s report</td>
<td>Not available</td>
<td>2000, 2002–03, 2005–06</td>
</tr>
<tr>
<td>DTP3 immunisation</td>
<td>Children aged 12–59 months</td>
<td>Children who had at least three doses of pentavalente as shown on a vaccination card or, for those without a card, according to the mother’s report</td>
<td>Not available</td>
<td>2000, 2002–03, 2005–06</td>
</tr>
<tr>
<td>BCG immunisation</td>
<td>Children younger than 5 years</td>
<td>Children who showed a BCG scar, or who reported having one</td>
<td>Not available</td>
<td>2000, 2002–03, 2005–06</td>
</tr>
<tr>
<td>Antenatal care</td>
<td>Women who gave birth in a given time period</td>
<td>Saw a doctor, nurse, or midwife during pregnancy at least four times</td>
<td>Received blood test and had blood pressure measured</td>
<td>2000, 2002–03, 2005–06</td>
</tr>
<tr>
<td>Skilled birth attendance</td>
<td>Women who gave birth in a given time period</td>
<td>Birth attended by health professional</td>
<td>Birth took place in hospital</td>
<td>2000, 2002–03, 2005–06</td>
</tr>
<tr>
<td>Services delivered to premature babies</td>
<td>Babies at 28–36 weeks gestation or those weighing <3500 g at birth</td>
<td>Birth took place in hospital</td>
<td>Difference in mortality rate in premature babies compared with maximum and minimum risk-adjusted mortality</td>
<td>2000–05</td>
</tr>
<tr>
<td>Treatment of acute respiratory infections in children</td>
<td>Children younger than 5 years whose mothers report their having had a cough, cold, flu, bronchitis, or earache in the 2 weeks preceding the survey</td>
<td>Mother reports child received treatment</td>
<td>Treatment from a health worker</td>
<td>2000, 2002–03, 2005–06</td>
</tr>
<tr>
<td>Treatment of diarrhea in children</td>
<td>Children younger than 5 years whose mothers report their having had an episode of diarrhea in the 2 weeks preceding the survey</td>
<td>Mother reports child received more liquids or oral rehydration therapy</td>
<td>Not available</td>
<td>2000, 2002–03, 2005–06</td>
</tr>
<tr>
<td>Breast cancer screening</td>
<td>Women aged 40–69 years</td>
<td>Had a mammography within past year</td>
<td>Not available</td>
<td>2000, 2002–03, 2005–06</td>
</tr>
<tr>
<td>Cervical cancer screening</td>
<td>Women aged 25–64 years</td>
<td>Had a pap test within past year</td>
<td>Not available</td>
<td>2000, 2002–03, 2005–06</td>
</tr>
<tr>
<td>Treatment of vision disorders</td>
<td>Adults older than 20 years who report near or far visual impairment or wear glasses or contact lenses</td>
<td>Use glasses or contact lenses</td>
<td>Report no near or far visual impairment when wearing glasses or contact lenses</td>
<td>2002–03, 2005–06</td>
</tr>
<tr>
<td>Treatment of asthma</td>
<td>Self-reported symptoms to estimate probability that an individual is asthmatic with Probabilistic Diagnostic Scale method</td>
<td>Self-reported medication</td>
<td>Not available</td>
<td>2002–03</td>
</tr>
<tr>
<td>Treatment of angina</td>
<td>Self-reported symptoms to estimate probability that an individual has angina with Probabilistic Diagnostic Scale method</td>
<td>Self-reported medication</td>
<td>Not available</td>
<td>2002–03</td>
</tr>
<tr>
<td>Treatment of arthritis</td>
<td>Self-reported symptoms to estimate probability that an individual has arthritis using Probabilistic Diagnostic Scale method</td>
<td>Self-reported medication</td>
<td>Not available</td>
<td>2002–03</td>
</tr>
<tr>
<td>Glycaemic control in diabetes</td>
<td>Fasting plasma glucose estimated from casual plasma glucose ≥6.9 mmol/L</td>
<td>Self-reported use of oral hypoglycaemics or insulin</td>
<td>Reduction in fasting plasma glucose compared with treatment targets</td>
<td>2000, 2005–06 (not yet available)</td>
</tr>
<tr>
<td>Treatment of hypertension</td>
<td>Adults older than 20 years with systolic blood pressure ≥140 mm Hg</td>
<td>Self-reported use of antihypertensive agents</td>
<td>Reduction in systolic blood pressure compared with treatment targets</td>
<td>2000, 2005–06</td>
</tr>
<tr>
<td>Treatment of hypercholesterolaemia</td>
<td>Adults older than 20 years with total cholesterol ≥5.2 mmol/L</td>
<td>Self-reported use of drugs for cholesterol reduction</td>
<td>Reduction in total cholesterol compared with treatment targets</td>
<td>2005–06</td>
</tr>
<tr>
<td>Influenza vaccine</td>
<td>Adults older than 60 years</td>
<td>Self-reported influenza vaccine in past year</td>
<td>Not available</td>
<td>2005–06</td>
</tr>
</tbody>
</table>

MMR=measles, mumps, and rubella. DTP3=three doses of diphtheria toxoid, tetanus toxoid, and pertussis vaccine.

Table 1: Indicators and associated measurement strategies for 18 interventions that have been measured for all or most states since 2000.
the steps taken to implement this performance benchmarking approach and present main results for 2005–06. Implications for both the evolution of the Mexican health system and other health systems are discussed.

Evidence

Selection of interventions for monitoring

Implementation of effective coverage as a performance benchmarking device in Mexican states began with selection of interventions for monitoring and the development of measurement strategies and data requirements. On the basis of a review of available data systems, only a few interventions could be measured with confidence at the state level. Though not exhaustive, the set of interventions that can be opportunistically measured has been the basis of the first generation of benchmarking of effective coverage in Mexico. Table 1 provides the indicators and associated measurement strategies for 18 interventions that have been measured for all or most states for at least one time period in the past 5 years. We stress that this set of interventions is opportunistic rather than ideal; however, it does provide useful insights into health system performance across states in Mexico. As noted in table 1, for several interventions, no measure of quality could be developed with available data; in these cases, crude coverage, which can be defined as use dependent on need, has been used.

Measurement strategies for need, use, and quality

Measurement of effective coverage for each indicator must begin with three questions. First, how do we identify those individuals who need an intervention? Need is not simply those who demand a service, but a true population measure of those who would benefit from an intervention. Second, how do we identify those in need who receive an intervention? Third, how do we measure the quality of the intervention delivered? Quality measurement is the most challenging area, and the one for which the most development was needed. We have taken the perspective of measuring need and use for the entire population, and quality of all providers, not only of the Ministry of Health facilities. Panel 1 shows the strategies that can be used for measuring need, use, and quality of interventions (supplementary information available on authors’ website).

Effective coverage for Mexican states in 2005–06

Details for the various data sources that have been used to measure effective coverage for the period 2000–03 are available elsewhere. We have taken advantage of the recently completed national examination survey, 2005–06, and registry data to measure effective coverage for 14 of the 18 indicators in table 1 for 2005–06 (supplementary information available on authors’ website). We present detailed results for three interventions—visual impairment correction, hypertension management, and services delivered to premature infants—to show the practical challenges. For some indicators, we present results for crude coverage, defined

Panel 1: Measuring need, use, and quality for effective coverage of interventions

Measuring need

Practical strategies to measure need or capacity to benefit from an intervention include:

- using a norm: interventions such as cervical cancer screening, immunisations for children or mammography are needed by all members of a particular age-sex group;
- using self-reports in a household survey of a single symptom or syndrome such as diarrhoea, visual impairment or a respiratory infection;
- using self-reports in a household survey of multiple symptoms that together can identify a condition or disease such as asthma, depression or angina;
- using diagnostic or performance tests in an examination survey such as for HIV infection, blood pressure, blood sugar or cholesterol;
- using cases meeting clinical criteria diagnosed in health facilities; in many systems, however, this might underestimate need because of poor diagnostic quality, poor reporting from private health care facilities and lack of access to care for the disadvantaged.

Strategies for measurement of use

- using self-reports of care in household surveys;
- using drug inventories in household surveys where the interviewer observed the drugs;
- using health service registries that record the delivery of an intervention; data from registries can often be biased upwards but may also miss private sector delivery;
- using blood assays of drug use or biomarkers that indicate intervention, such as antibodies due to vaccination.

Measuring quality

Measuring the fraction of potential health gain delivered

- change in a biological endpoint such as blood pressure, cholesterol or presence of Mycobacterium tuberculosis in sputum culture;
- change in measured functional health status such as a change in vision with correction;
- change in self-reported functional health status;
- approximate quality with process proxies for health gain such as the components of antenatal care;
- Quality measurement might need use of cross-sectional data, so issues of endogeneity must be addressed. In other instances, risk-adjustment of measured outcomes must also be undertaken. Quality measurement is the area that will require the most methodological advance and improvement of data systems for most countries in order to fully capture effective coverage.

Endogeneity

Endogeneity describes models in which reverse causality exists between the explanatory variables and outcome variable. In the effective coverage context, use of cross-sectional surveys to measure intervention quality means that the effect of an intervention can be obscured if endogeneity is present. For example, a naive regression of the effect of blood-pressure treatment on systolic blood pressure suggests that treatment actually raises blood pressure. This, of course, is only true because individuals receive treatment when they exhibit high systolic blood pressure. In this case, not only does treatment influence blood pressure, but the reverse causality also exists, as blood pressure level influences treatment.

For supplementary information see http://sinais.salud.gob.mx/ effective_coverage_webappenl/ and http://www.globalhealth.harvard.edu/ mexicolancet.html
as the fraction of those who need an intervention who use it, without adjustment for quality, in addition to effective coverage or alone because no measurement of quality was available. In cases for which we can measure both crude and effective coverage, the contrast between the two helps identification of the relative roles of physical, financial, or cultural issues in access to any care and the quality of and adherence to care provided (supplementary information available on authors’ website). Composite effective coverage, inequalities in effective coverage by wealth groups, and the relationship between effective coverage and expenditure are also analysed to show the utility of the approach in Mexico.

Effective coverage for visual impairment is defined as the proportion of individuals with visual impairments who have glasses or contacts that solve their vision problems (table 1). In this case, crude coverage is simply the proportion who need the intervention who report having glasses or contact lenses. Crude coverage and effective coverage might be underestimated or overestimated if self-reported visual impairment is confounded by differential item functioning.\(^1\)–\(^3\) Figure 1 shows effective coverage and crude coverage of corrections for visual impairment. Both measures have a consistent gradient; poor states such as Oaxaca and Chiapas have the lowest effective coverage, and Nuevo Leon and the Federal District have the highest levels of crude and effective coverage. Effective coverage in the Federal District is more than twice as high as in Oaxaca. The exact ordering of states is different for crude coverage than for effective coverage, which means that variation exists not only in access to appropriate care, but also in the quality of visual correction provided.

Effective coverage for services delivered to premature babies is defined as the proportion of the maximum possible health gain a moderately premature baby could expect to receive that is actually delivered. Maximum and minimum expected rates of mortality as a function of the quality of neonatal care are based on gestational age and birthweight (further details available on the authors’ website). A value of 100% means that, controlling for gestational age and birthweight, the mortality rate is the same as that in states in the USA with the lowest risk-adjusted neonatal mortality rates (Massachusetts, New York, and New Jersey in 2000–03). A value of 0% represents the same mortality rate, controlling for gestational age and birthweight, as that in the USA in the 1950s. For this analysis, only data for births in Ministry of Health records were available.

Figure 1: Crude coverage and effective coverage of visual impairment correction for Mexican states and the Federal District, 2005–06

Mexican states and Federal District

- **Crude coverage**
- **Effective coverage**

Differential item functioning

Response patterns that vary between individuals with the same underlying levels of a latent variable. For example, responses to questions on degree of visual impairment may vary based on socioeconomic status, gender, or cultural norms even if the individuals answering the questions have similar levels of visual acuity.
Health hospitals were available, representing about 40% of all recorded births in Mexico in 2005. Since a substantial proportion of births take place in social-security or private-sector hospitals and some births in the poorest communities occur at home, this is, of course, an underestimation of the true need in the population. In reality, this measure captures only the quality component of neonatal care delivered to premature babies in Ministry of Health hospitals. To reduce uncertainty across states, figures have been calculated from 2 years of data for 2004–05. Figure 2 shows that the national average for coverage is 81%, with results ranging from 58% in Guerrero to 95% in Aguascalientes. Coverage for the poorest states of Puebla, Oaxaca, and Chiapas is less than 71%. The national average has steadily risen from 71% in 2001 to 83% in 2005.

Effective coverage of the treatment of hypertension is defined as the ratio of actual reduction in systolic blood pressure to the difference between pretreatment systolic blood pressure and the target blood pressure for all individuals with hypertension (ie, the proportion of the population reduction in blood pressure that can potentially be delivered through treatment that is actually delivered). The target reduction in blood pressure with which this actual gain should be compared is based on clinical guidelines. Supplementary information for thresholds to define hypertension and the treatment targets is available on the authors’ website. In some countries, treatment guidelines for hypertension are based on assessment of overall cardiovascular risk, but in Mexico guidelines are currently based on measured blood pressure only. This analysis is based on the single risk factor approach implemented in Mexico, but we believe that Mexico should move to modify its treatment guidelines for cardiovascular risks to be based on an individual’s overall risk score.

The main challenge for hypertension is to assess the reduction in blood pressure brought about by treatment. The same problem exists for measurement of effective coverage of glycaemic control in diabetes or of treatment of hypercholesterolemia. Since we have no direct information for each person’s experience of treatment, we have used an instrumental variables method to estimate the national average reduction in blood pressure for those on treatment (supplementary information available on authors’ website). This analysis suggests that...
the average reduction in systolic blood pressure owing to treatment in Mexico is 11 mm Hg; single-agent clinical trials have shown reductions between 5.4 and 8.4 mm Hg.20 State effective coverage has been calculated on the basis that the average reduction of systolic blood pressure for those on treatment is the same in all states. Figure 3 shows that, nationally, crude coverage of hypertension treatment is estimated to be about 49% while effective coverage is only 23%. As with other coverage indicators, large variations in effective coverage rates exist between states in Mexico. The state with the highest effective coverage is Jalisco, which, at 31%, is almost twice as high as Queretaro at 16%. Some poor states, such as Chiapas and Oaxaca, are doing much better at delivering effective coverage for hypertension than for other interventions; these disadvantaged states have had substantial increases in crude and effective coverage since 2000.21 The low crude and effective coverage for hypertension cannot be explained by the fact that people with hypertension, but with low total cardiovascular risk, are not being treated. Subgroup analysis shows no relation between crude coverage and total cardiovascular risk.

Table 2 provides the results for effective coverage by state for 14 interventions for 2005–06. Results range from 9% for mammography in Guerrero to 100% for skilled birth attendance at delivery for Baja California Sur and the Federal District. Of the 14 interventions for which data for 2005–06 are available, eight are for maternal and child health and six are for other interventions. The maternal and child health interventions have fairly high coverage on average; for skilled birth attendance and the childhood immunisations, the range between states is also quite small. The other interventions, which are not part of the maternal and child health package, and which includes breast cancer screening, cervical cancer screening, adult influenza vaccination, visual impairment correction, treatment of hypertension, and treatment of hypercholesterolaemia, have much lower coverage.

A composite measure of effective coverage has been constructed from these 14 interventions to help summarise the overall pattern of service delivery at the state level and to study inequalities. Panel 2 describes alternative methods that can be used to construct composite measures of effective coverage and further supplementary information describing in detail the application of three different methods in Mexico is available on the author’s website. Use of simple averages or weighting of each intervention by total health gain yields very similar results; figures discussed here are
based on simple averages. These composite results, however, should be considered with care. A composite based on a small set of indicators might not adequately show the interventions the system should deliver. The set of interventions available for Mexico cannot be regarded as the ideal or the most parsimonious set of interventions. In fact, the set of selected interventions for which consistent and relevant information is available compared with the burden of disease is biased towards maternal and child health. This bias underestimates the crucial role of other interventions to target chronic conditions and other non-communicable diseases. Finally, some measurement issues remain for several of these indicators, including absence of data for the quality dimension of effective coverage.

Panel 2: Construction of effective coverage composites
At least four general methods are available for creation of composite measures of effective coverage:
1 With the formal definition of effective coverage, each intervention could be combined in proportion to the average health gain it delivers to the population;
2 Preference weights can be derived from revealed choices in the marketplace or from survey responses;
3 Arbitrary weights, such as simple averages, or other weights can be used;
4 One can assume that each indicator is an imperfect measure of an underlying unobserved construct, health system effective coverage, and use latent variable techniques, such as factor analysis or variants of probits and logits.

In Mexico, results are mostly insensitive to the weighting method adopted. We have used simple averages for presentation here.
The highest levels of composite effective coverage are in the Federal District (65·1%) and the lowest in Chiapas (54·0%). In view of the huge differences in socioeconomic status between these states, these differences are smaller than expected. The results in table 2 should be interpreted as providing a useful ranking across states, but could exaggerate the actual proportion of effective coverage. Skilled birth attendance, provision of three doses of diphtheria toxoid, tetanus toxoid, and pertussis (DTP3) vaccine, measles immunisation, and BCG vaccine all have extremely high coverage with only small differences between states. For several indicators we have measured crude coverage and not effective coverage, since information on the quality of the intervention delivered was not available. Figure 4 shows a map of composite effective coverage by state and draws attention to the distinct geographic patterns for composite effective coverage.

For all interventions included in the composite effective coverage, apart from the services delivered to premature babies, information also exists in the National Health and Nutrition Survey 2005–06 dataset to estimate inequalities in coverage by household wealth. Figure 5 shows that inequalities exist in effective coverage between
income quintiles for the combination of all interventions; subcomposites for the maternal and child health and other interventions are also shown. The absolute gap in effective coverage between quintiles is 9% for the maternal and child health interventions and 14% for the other interventions. Since the effective coverage for the non-maternal and child health interventions is, on average, much lower than that for other interventions, the 14% absolute gap also represents much greater relative inequality between quintiles. As discussed in detail elsewhere,21 inequalities narrowed substantially during 2000–06. The gradient between quintiles, however, might be underestimated because effective coverage of glycaemic control in people with diabetes has not been included in this analysis since the relevant data from the National Health and Nutrition Survey 2005–06 were not yet available.

The relation between effective coverage and health spending provides an indication of the amount of intermediate output attained achieved by the health system for any given amount of inputs. Figure 6 shows composite effective coverage for 2005–06 based on the 14 interventions compared with the log of public-health spending per head. Unfortunately, state-level estimates of private spending per head were not available, so the figure compares composite effective coverage on the basis of services provided in the public and private sectors with public spending only. The three outliers on Figure 6 should be noted. The state of Mexico, which surrounds the Federal District, has the lowest spending per head and moderately high effective coverage, which might be explained by the residents receiving care in the Federal District, where many of them also work. Baja California Sur has the second highest public expenditure per head, but fairly low effective coverage; this state is geographically isolated from other parts of Mexico, and is known to have higher unit costs. Finally, the Federal District has the highest coverage of any of the states, but also strikingly high spending, which could in part be explained by the delivery of services to residents of the state of Mexico. Although we have not yet completed formal efficiency analysis, these patterns suggest there might be substantial variation in efficiency of resource use across states.

Considerable debate is ongoing about the actual benefits of public spending on health.23–27 These studies have examined the relation between health outcomes and public-health spending, using statistical methods to control for the many other factors that influence cross-national patterns of health. Effective coverage is a more direct measure of the health gain being delivered by the health system. Table 3 summarises the relation between the 14-intervention composite of effective coverage, a sub-composite of the maternal and child health interventions and a sub-composite of the non-maternal and child health interventions with the log public-health spending per head. Table 3 also shows results calculated after exclusion of Mexico State and Baja California Sur, which are outliers. In all cases, a significant relation exists between effective coverage and public spending per head, with a similar coefficient on the log of spending per head. When the two outlying states are excluded, the R^2 ranges from 23% for maternal and child health interventions to 66% for the other interventions. One possible explanation for the weaker relation between maternal and child health coverage and total public spending per head is that states driven by the policy priority attached to such interventions preferentially fund these programmes from their federal allocations.

For eight interventions (acute respiratory infections, diarrhoea, cervical and breast cancer screening, skilled birth attendance, hypertension, services delivered to premature babies, and antenatal care), we can calculate comparable measures of crude or effective coverage for 2000 and 2005–06 to explore changes in the states during that time.21 Figure 7 compares change in coverage with change in public spending per head during the same period. A significant relation exists between the two
Effective coverage metrics show good coverage for maternal and child health services, although indicators that capture the quality dimension, such as antenatal care, services to premature babies, and even DTP3 crude coverage show that much room for further improvement exists. Generally, physical access to these services is not a large problem, as shown by the high rates of crude antenatal care and skilled birth attendance in even the poorest states. Services to premature infants, which are a direct measure of quality of neonatal care in Ministry of Health hospitals, show that quality of care must be improved in several states. Even for this measure, however, Ministry of Health hospitals in Mexico are delivering 81% of the health gain achieved in the best states in the USA with substantially less expenditure. The high coverage for maternal and child health interventions might indicate a historical prioritisation of a set of interventions that are mostly cost-effective and address important health problems.

The second health system, which addresses non-communicable diseases and injuries, has much lower effective coverage. For the six interventions presented here, the national average is only 32%. If the list were expanded to include all the measures that have been implemented in Mexico for 2000–03, this national figure would probably be lower still. More than 82% of Mexico’s burden of disease is due to non-communicable diseases and injuries. The major challenge for the future will be to increase effective coverage for these interventions. Even if the past focus on maternal and child health interventions were completely justified by the epidemiological patterns of 30 years ago and by relative cost-effectiveness, in view of the current realities of Mexico, increased effective coverage for affordable interventions for non-communicable disease and injuries will be necessary to make further progress.

Nationally, half the population with hypertension, half those with a visual impairment, and three quarters of those with hypercholesterolaemia do not receive any intervention. The absence of physical, financial, and cultural access is likely to have an important role in explaining that gap in crude coverage. For those who do receive a treatment, on average, only about half the estimated potential effect of these interventions is being delivered. The gap between crude and effective coverage is probably an indicator of both variable technical quality of providers and the challenges of encouraging adherence to therapy. The Mexican health reform holds out the promise of substantially increasing financial access and the supply of drugs and staff to deliver these interventions. Strategies to achieve good provider quality and adherence to treatment for non-communicable disease interventions, however, need to be further developed.

Improved effective coverage metrics that better capture the quality of effective coverage and include a wider array of interventions can play an important part in the future of the Mexican health system; the reform calls for the...
allocation of federal solidarity resources to the states to be a function of need, performance, and state financial effort. A suitably expanded composite measure of effective coverage could become the basis for rewarding states for performance improvements as laid out in the law. As effective coverage measures are used more widely in the Mexican health system to inform programme managers about their real effect on the communities they serve, to influence resource allocation and as an accountability device, making sure that a broad set of interventions are measured will become important. An insufficient list of interventions for measurement of composite effective coverage might encourage programme managers to pay attention only to that set of interventions. It will also be important to forge a consensus with the states on the set of interventions used for benchmarking and rewarding performance.

Work so far on benchmarking of state effective coverage suggests that evolution of the Mexican health information system is needed. First, more attention should be given to measurement of the quality of interventions being delivered. For many indicators in this analysis, only very limited information or proxies are available to capture the dimension of quality that needs to be included in a full measurement of effective coverage. Variation in quality is likely to be an important contributor to low effective coverage given the evidence for services delivered to premature infants and patients with hypertension.

Second, examination surveys provide hard endpoints on which to anchor the analysis of effective coverage. Mexico should continue to expand the opportunities to use blood tests and performance tests to measure effective coverage directly through its periodic national examination surveys. State representative examination surveys are, however, expensive and cannot be used on a yearly basis. Work is urgently needed to characterise the biases in administrative data for measurement of effective coverage for some important interventions. Careful comparison of administrative data with stronger measurements, for example, from examination surveys, might make possible the development of methods to correct biases in administrative data, so that they can be used to monitor yearly progress. An overall measurement strategy might combine higher quality data collection every 5 years with administrative data used for the intervening years.

Third, because of the high prevalence of diabetes, high mortality rates from diabetes, and the national priority that diabetes control programmes have been assigned, careful attention should be given to the development of better measures of effective coverage of preventive and risk-management interventions for diabetes. For measurement of the prevalence of diabetes and the effective coverage of glycaemic control treatments, HbA1c should be measured in all, or in a random subsample of, respondents in the examination surveys.

Fourth, a comprehensive information system needs to harmonise data collection across all institutions in the public and private sectors. This is a substantial challenge; a fragmented health system in Mexico also means a fragmented health-information system. For example, the estimate of effective coverage of services delivered to premature infants has been made on the basis of births in Ministry of Health hospitals only. Expanding this estimate to include all public-sector hospitals and even private-sector ones is not technically difficult, but requires the commitment of many people. An integrated data system and data sharing would help measurement of the effective coverage of other interventions as well.

Fifth, because of the tremendous potential of drugs to treat high blood-pressure, and blood cholesterol and glucose concentrations, prospective registries of treatment effect should be developed. In almost all countries, registration and reporting of the results of treatment for smear-positive pulmonary tuberculosis is now standard practice. This information system provides information for the outcome of treatment by registering each new case and repeating sputum examinations at the end of treatment. Experience with DOTS (a short-course chemotherapy strategy for tuberculosis following WHO guidelines) programmes has shown that this type of prospective cohort registry of treatment outcome is not only possible, but is also feasible in low-resource settings. A similar approach can be developed for registration of results for blood pressure, and blood cholesterol and glucose measurements.

Global lessons

Effective coverage is the measure on which leaders of any health system should be most focused. Society invests resources in the health system for both public-health and medical care to improve population health. Actions taken today, such as curtailment of tobacco consumption or immunisation against hepatitis B, will have health effects decades into the future. Because of the lag between many health interventions and the effect on population health, managers and decision-makers, need devices that help track progress towards improving population health. Because effective coverage captures the delivery of interventions to those in need today, a more timely assessment of health system action is provided. For example, delivery of smoking cessation interventions today will lead to changes in tobacco-related mortality rates in 20–30 years. Effective coverage is a useful measure that can tell us how well public-health and medical-care investments are contributing to individual and population health.

In policy debates, the issue of access to the health system often emerges as a central topic. Although a rough intuitive notion about the meaning of access exists, it has not been defined or measured in a consistent manner. To some, access simply means the presence of health services within a certain physical distance. To others, it means health services that are affordable for all, including poor people. Effective coverage as a
construct and a measurement device can provide a practical way to measure access to health systems. With appropriate data, exploration of the contribution of different factors, such as physical distance, financial barriers, provider quality, and household perceived need to overall effective coverage is also possible.19

As an analytical or monitoring device, effective coverage focuses on achievement. Many discussions of health policy are often explicitly or implicitly based on the notion of availability. The role of the government is seen as making services physically and financially available. Whether households use those services is seen in this view as less important than the fact that they are legally and physically available. According to this view of health services, individuals or households that do not use available services choose not to, and therefore this is not an issue of interest to governments. We believe that when individuals who need a health intervention do not get that intervention, part of the stewardship role of government is to understand the causes, and intervene. Thus, what matters is delivery of health gain to individuals who need it.

How should other countries define their set of interventions to monitor effective coverage? The formal definition of effective coverage for a health system would need information for all health interventions that are delivered by the system. In practice, in even the most sophisticated health system, to measure all interventions is not feasible; a limited subset of interventions must be used to monitor effective coverage of a health system. This set of interventions should ideally be selected to capture the set of affordable interventions that, if implemented, would make the biggest improvement in population health in a given country or make the biggest contribution to reducing health inequalities. Three criteria have been invoked: affordability, total population health gain, and effect on health inequalities. A fourth criterion is whether a measurement strategy for the intervention can be developed.

Affordability means that the yearly cost of healthy life gained through an intervention falls below the maximum price that a given society is willing to pay for that benefit. The second criterion is the size of population health gain if an intervention is fully implemented. If only a few interventions can be monitored, those selected should, if implemented, have a large effect on population health. Formulation of this list of interventions for a country needs considerable analytical work, but is in principle made more feasible by the availability of the WHO-CHOICE database for cost-effectiveness of interventions.20 The third criterion, effect on health inequalities, needs detailed national information for the actual patterns of inequalities and what the effect of available intervention strategies on these inequalities would be.

Measurement of effective coverage between states or provinces in a country or between countries will strengthen the economic analysis of use of health-system resources. For example, we have used effective coverage measures between states to estimate the efficiency of resource use by State Ministries of Health.20 Effective coverage is a direct measure of what the health system for a geographic unit is delivering; it avoids two major analytical problems that have plagued the analysis of health service inputs and health outcomes: time lags across action and health outcomes and the challenge of separating out the effects of other factors from health system actions on health outcomes. The strong relation across states in Mexico between effective coverage and public-health spending per head is an indication of the ability to quantify the output of the system with this approach. Variation in effective coverage at the same extent of spending per head implies that some states are using resources more efficiently than others. Benchmarking of effective coverage might provide evidence for what can be achieved with increased money as well as for and potential opportunities to improve how well the money is spent.

Effective coverage compares how much health gain the health system is delivering to the population compared with how much it could deliver; it is fundamentally an accountability measure. In a country, what institution has the independence, credibility, resources, and technical competence to undertake this work? The answer will depend on national context, but institutional architecture needs to be designed with certain safeguards. Some decision-makers might not like the accountability that will come with good measurement of differences in local or national public-health and medical care. Whatever entity undertakes this monitoring function, the staff must have the mandate, equipment, and job security to deliver to the public sound performance benchmarking.

As with Mexico, many middle-income and some low-income countries are well advanced in the epidemiological transition. Communicable, maternal, and perinatal disorders account for most of the burden of disease in only three of 14 epidemiological subregions, namely, two regions of sub-Saharan Africa and the poorest countries of the Eastern Mediterranean region.21 Yet, monitoring frameworks like the Millennium Development Goals (MDGs) are exclusively focused on communicable, maternal, and perinatal causes. This narrow focus needs to be expanded to capture the main interventions that address non-communicable diseases and injuries that are cost-effective and will have a big effect on population health. Although the set of interventions that should be used for performance benchmarking will vary across countries according to epidemiological circumstances, with experience, a core set of interventions that are common to all or most countries is likely to emerge. These interventions could be combined with the MDG indicators to create an MDG-plus monitoring framework that is focused on effective coverage of these interventions.
Lancet Health System Reform in Mexico Series steering committee
Felicia Marie Knaul (Chair), Emmanuela Gakidou, Eduardo González-Pier, Rafael Lozano, Jaime Sepúlveda.

Conflict of interest statement
We declare that we have no conflict of interest.

Acknowledgments
We thank the team that did the National Health and Nutrition Survey study, including Juan Rivera, Teresa Shaman, Mauricio Hernández; the team that provided databases and parallel analysis, including Patricia Hernández, María de la Cruz Muradas, Vanessa Vázquez, María Victoria Castro, Alejandro Suarez, Daniel Castro, Juan José González, Enrique Ruelas, Roberto Tapia; María Fernanda Merino Juarez for helpful comments; and Ari Friedman and Michael Lismann for research assistance.

References